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1. INTRODUCTION

The Earth Radiation Budget (ERB) parameters, derived from the Nimbus-7 scanner measure-
ments (Jacobowitz et al., 1984a), have recently been rederived using two new and distinct
algorithms. Narrow-field-of-view (NFOV) radiances can be used to estimate the total upward
flux emanating from an observed region, but this is difficult because of the anisotropic nature
of the radiance fields (see Taylor and Stowe, 1984, for discussion of the degree of anisotropy
involved). One procedure often used is to establish average anisotropic models for the most
common scenes, set up a scene identification algorithm, and then estimate the total scene
irradiance from each radiance measurement. Maps are generally used to identify surface types
such as ocean, land, desert, and snow, but the most difficult step is to differentiate between clear
and cloudy scenes. We have used a Maximum Likelihood Cloud Estimation (MLCE) algorithm
similar, but not identical, to the Earth Radiation Budget Experiment (ERBE) algorithm (Smith
et al., 1986; Wielicki and Green, 1989). Because of the unique bidirectional scanning patterns
used by the Nimbus-7 ERB scanner (see Figure 3-1), radiance measurements can be collected
over a period of time, sorted into angular bins (SAB), and a direct angular integration performed
to determine the upward flux density. This procedure needs no angle-dependent models (ADMs)
or cloud-identification algorithm. However, because of the moderate measurement rate of the
scanner, it does require collecting data over a longer period of time and/or area than does the
MLCE procedure. The MLCE data set gives better regional and temporal resolution, while the
SAB results act as an accuracy control and yield information on average bidirectional reflectance
and emittance patterns.

The original Nimbus-7 ERB scanner Earth radiation budget products (Jacobowitz et al., 1984a,b)
suffered from two serious problems. First, the calculated albedos were about 10% higher than
the wide-field-of-view (WFOV) values (Arking and Vemury, 1984). This was apparently caused
by scene identification problems that predicted too many clouds for large satellite zenith angles.
Since the ERB scanner was designed to take a large percentage of its measurements at large
satellite zenith angles, this was a serious problem (Vemury et al., 1984). Secondly, the
Outgoing Longwave Radiation (OLR) was calculated to be some 3 W/m? too low because of use
of incorrect sensor temperature correction coefficients in the calibration equation (Kyle et al.,
1985).

The scanner took measurements from November 16, 1978 through June 20, 1980. It normally
operated on a 3-day-on/l-day-off cycle; however, prior to May 1979, this schedule was
frequently interrupted because of priority requirements of the other experiments on the Nimbus-
7. Tt was found that the ERB scanner interfered with the short-lived Limb Infrared Monitor of
the Stratosphere (LIMS) Experiment. Thus, prior to May 1979, there were extended periods
when the scanner measurements were too sparse for accurate results to be obtained from the
SAB algorithm. In late December 1978, one of the four shortwave sensors in the scanner
became too noisy for accurate measurements. Thus, during daylight there are only 75% as
many shortwave measurements as there are longwave ones. This compounds the data-sampling
problem. As a result, only 13 months (May 1979 through May 1980) were reprocessed using
the SAB and MLCE algorithms.



The first stage in the reprocessing was to take the scanner measurements from the ERB Master
Archive Tapes (MATs), optimize the calibration of the radiances, sort and average them
geographically into 18,630 subtarget areas (STAs), each approximately (166 km)?, and 49
angular bins. This is done for each half orbit so that noon and midnight measurements can be
treated separately. The upward hemisphere covering an STA is divided into 85 bins, but
symmetry is assumed about the principle (zenith line-Sun) plane reducing the number to 49 (see
Figure 2-3). These bins were chosen as an empirical compromise. They are small enough in
number to allow collection of radiances for monthly integrations on individual target areas (TA)
but numerous enough to allow reasonable representation of complex bidirectional reflectance
patterns. They also correspond to the angular bins used in the ERBE bidirectional reflectance
models (Suttles et al., 1988). These sorted, calibrated radiances are stored on scene radiance
tapes (SRTs) that are used as input in producing both the SAB and MLCE products.

The data preparation is discussed in Section 2. The SAB algorithm is covered in Section 3, and
the MLCE algorithm, in Section 4. The problem of estimating diurnal averages from Sun-
synchronous observations is covered in Section 5. The products are discussed and compared in
Section 6, while the SRT, SAB, and MLCE tapes and parameters are described in Sections 7,
8, and 9, respectively. , ‘

The data products d'escrib’ed here can be obtained by calling or writing:

National Space Science Data Center
Code 933.4

Goddard Space Flight Center
Greenbelt, MD 20771

Telephone: (301) 286-6695

Telex: 89675 NASCOM GBLT
TWX: 7108289716

SPAN: NSSDC::REQUEST



2. DATA PREPARATION

2.1 SORTING OF SCANNER RADIANCES

As discussed in Jacobowitz et al. (1984a), the ERB instrument is equipped with four telescopes,
each containing two detectors that sense the broad-band visible (0.2-4.5 um) and infrared (4-50
pm) radiation separately. The scan rate is variable and results in a field-of-view that ranges
from 90 km? at nadir to about 250 km? at the horizon. Table 2-1 gives the characteristics of
these sensors. The biaxial ERB scanner has five preprogrammed scan configurations that are
shown schematically in Figure 2-1 (Jacobowitz et al., 1984a). The instrument is capable of
sampling approximately 80% of the Earth’s viewable disc in a little under 4 minutes. During
this time, about 1,700 observations of the reflected and emitted radiation are made and recorded
on magnetic tape. The instantaneous radiances and their corresponding Earth locations and
geometry are available from the National Space Science Data Center (NSSDC) of the National
Aeronautics and Space Administration (NASA). Each of these MATSs contain 3 days of ERB
data.

Table 2-1. Characteristics of ERB Scanning Channels
Noise
Equivalent
Wavelength Radiance NEP FOV
Channel Limits (um) Filter (W cm?sr'h) (W Hz-4) ©)

15-18 0.2-4.8 Suprasi]l W 3.7 x 10°% 6.65 x 10° 0.25x5.12
19-22 4.5 -50 Deposited 1.8 x 107 1.73 x 10° 0.25x 5.12

layers on

diamond

substrate

The scan patterns 1, 2, 3, and 4 were designed to give a maximum number of angular
independent views of the same geographic area, while scan pattern 5 consists of a composite of
mode 3 and 4. The operating schedule of the ERB scanner is shown in Table 2-2. The scanner
operated in scan mode 5 during February 1979, part of March 1979, and continuously from May
through August 1979. In mid-September 1979, mode 5 failed. The scanner refused to
automatically switch from mode 3 to mode 4 and back again. From then until the failure of the
instrument on June 22, 1980, the scanner operated on 3 days in scan mode 3, off 1 day, and
followed by 3 days on in mode 4. The operating schedule of the ERB instrument was routinely
3-days on and I-day off with only minor interruptions resulting in 21 to 24 days of observations
during a month. However, not long after the start of ERB operations it was discovered that the
scanning operation was causing perturbations in the spacecraft attitude-that were above the toler-
ance levels of the LIMS. Since the LIMS experiment was expected to have a lifetime of
approximately 6 months, the ERB scanner had to compromise (Jacobowitz et al., 1984b). From
mid-December 1978 through mid-April 1979, the scanner operated for only 10 to 15 days per
month. In addition, during a special LIMS observation period that lasted from January 4, 1979

3
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Table 2-2. ERB-7 Scannef Status: 1978 to 1980

SCAN MODES # Days
# Days # Days Multiple
Scanner ERB 1 2 3 4 5 _ Scan
On Scanning Nadir Modes
DATE OF MONTH: 1-15
November 1978
December 11 9 9* 2
January 1979 11 7 T 4
February 9 6 1 5 3
March 11 8 1 2 4 3 1
April 9 2 2 7
May 11 8 8 3
June 11 11 11
July 11 11 11
August 11 11 11
September 11 11 3 3 5
October 11 10 5 5 1
November 11 11 5 6
December 11 11 7 4
January 1980 11 11 5 6
February 11 11 6 5
March 11 11 5 6
April 10 10 5 5
May 12 12 6 6
June 11 11 6 5
DATE OF MONTH: 16-31
November 1978 12 12 10%* 1 1
December 12 8 8* 4
January 1979 10 8 8* 2
February 9 4 4 5
March 12 8 4 4 4
April 12 10 8 | 2 2
May 11 11 11
June 12 12 12
July 12 12 12
August 12 12 12
September 12 11 6 5 1
October 12 10 5 5 2
November 11 11 5 6
December 11 11 4 7
January 1980 12 12 6 6
February 11 11 6 5
March 12 12 6 6
April 11 11 5 6
May 12 12 6 6
June 4 4 3 1
NFOV MONTHLY
TOTALS 427 384 18 8 144 | 105 | 107 43 2

*Scanner alternates between modes 3 and 4 each day.




to February 6, 1979, the ERB scanning channels were forced to operate in a nadir mode at night
when the satellite passed over the latitudes 80°N to 27°S (Jacobowitz et al., 1984b). Asa result
of these sampling constraints and instrument compromises, we have chosen to concentrate on
the period from May 1979 to May 1980.

Further processing of the scanner radiances and their Earth-viewing locations from the ERB
MATS has been done at the Space Data and Computing Division at NASA on an IBM 3081
computer. Each pair of radiances (reflected and emitted) is located into one of 18,630 regions
(referred to as an ERB STA of approximately 166 km? into which the entire Earth is divided.
The size of an STA varies from 1.5° latitude and longitude near the equator to 1.5° latitude and
40° longitude at the poles in order to maintain an equal area projection on the Earth. The final
top of the atmosphere (TOA) Earth radiation budget averages are typically produced on
approximately a 500-km? grid. These regions (2,070) are each composed of 9 STAs and are
referred to as ERB TA. The TA world grid is described in Table 2-3 and illustrated in Figure
7.2.  An STA consists of a further breakdown of each TA into 9 equal regions (1.5°
latitude/longitude at the Equator). These form a 3 by 3 grid in the TA and are coded with an
index ranging from 1 to 9, starting in the SE corner and ending in the NW corner as shown

below.

9 8 7

+

TA 5 6 5 4 N
3 2 1

.

The viewing geometry is sorted into 49 discrete angular bins, which are shown in Figure 2-3.
The observations made between relative azimuth angles from 189° to 351° are averaged together
with their symmetric counterpart on the opposite side of the plane of the Sun. The radiances,
in pairs when available, are each identified with (1) the ERB TA number and STA number
within the TA corresponding to the Earth location of the observation, (2) the solar zenith angle
(0° at zenith), and (3) the satellite zenith angle and the relative azimuth angle measured
clockwise from the Sun direction. The observed satellite zenith and relative azimuth angles are
first sorted into a discrete angular bin according to the scheme described in Figure 2-3. All
reflected and emitted radiances falling into each STA and each angular bin during each half-orbit
(the ascending and descending nodes are each processed separately) are then averaged. The total
number of STA scenes observed by the scanner during an orbit (ascending and descending nodes
combined) is a function of the scan mode and ranges from 4 to 6 thousand.



Table 2-3. ERB Scanning Channel Target Areas
Sequential Target No. Latitude Limits
No. of Target
‘l,\r cas 1n Southern Northemn Longitude
Latitude Band Hemisphere Hemisphere Lower Limit Upper Limit Interval*
80 956-1035 1036-1115 0.0 4.5 4.5
80 876-955 1116-1195 4.5 9.0 4.5
80 796-875 1196-1275 9.0 13.5 4.5
80 716-795 1276-1355 13.5 18.0 4.5
72 644-715 1356-1427 18.0 22.5 5.0
72 572-643 1428-1499 22.5 27.0 5.0
72 500-571 1500-1571 27.0 31.5 5.0
72 428-499 1572-1643 31.5 36.0 5.0
60 368-427 1644-1703 36.0 40.5 6.0
60 308-367 1704-1763 40.5 45.0 6.0
60 248-307 1764-1823 45.0 49.5 6.0
48 200-247 1824-1871 49.5 54.0 7.5
45 155-199 1872-1916 54.0 58.5 8.0
40 115-154 1917-1956 58.5 63.0 9.0
36 79-114 1957-1992 63.0 67.5 10.0
30 49-78 1993-2022 67.5 72.0 12.0
20 29-48 2023-2042 72.0 76.5 18.0
16 13-28 2043-2058 76.5 81.0 22.5
09 4-12 2059-2067 81.0 85.5 40.0
03 1-3 2068-2070 85.5 Pole 120.0

*For each latitude band, the longitude intervals start at the 0° meridian and progress west by the increments

listed.

The sequential numbering system assigns a number, between 1 and 2,070, to each target area, starting from
the south pole. Within each Iatitude belt the numbers increase westward from the 0° meridian and continue

to increase within the adjacent latitude belt to the north.

In each hemisphere, there will be 1,035 target areas and each of those areas is further divided into 9

subdivisions.

The mean number of angular views for an STA scene ranges from 3 to 5 (see Table 2-4). As
expected, there is better spatial coverage with scan mode 5 at the expense of viewing fewer
angular bins. The number of samples, the radiance means and their variation, along with other
ancillary data, are then written to magnetic tape for all STAs that were viewed by the scanner
during an orbit. These tapes are capable of storing the binned radiance averages for up to eight
days of data. This results in 3 tapes per month of observations and a total of 39 tapes for the
period from May 1979 to May 1980. These tapes, referred to as the ERB NFOV Scene-
Radiance Tapes, are available, along with additional documentation from the NSSDC (see

Section 1).
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Figure 2-3. Arrangement of the 49 angular bins used for the Nimbus-7 ERB scene radiance
tape. The satellite zenith angle is shown along the horizontal axis,and its azimuth angle,
around the circumference.



Table 2-4. Average Number of STA Scenes and Angular Bins Observed per Orbit by the Scanner as a
Function of Scan Mode

Number of Angular Bins
ERB Scan Mode Number of Scenes Mean Standard Deviation
172 5000 4.2 3.5
3/4 4100 4.9 3.3
5 6250 3.4 2.5
N;idir 1100 1.1 0.3

2.2 CALIBRATION ADJUSTMENTS
2.2.1 Shortwave Scan Channels

The shortwave scan channels were calibrated in the laboratory by viewing a diffuse target, using
several methods (Jacobowitz et al., 1984a). The information obtained from these preflight tests
was then used for the initial cahbratlon of the in-flight measurements. Additional postlaunch
checks on the shortwave scan channels were made by comparing the observed brightness levels
of nearly isotropic surfaces (i.e., cloud-free snow) to published ground-based observations,

comparing the mean shortwave ﬂux obtained from the scan channel radiances to the flux obtained
from the difference between the WFOV total- spectral channel 12 and the integrated longwave
scan channels over a 2-week period, and comparison of channel sensitivities obtained from views
of an on-board diffuse target illuminated by the Sun with prelaunch values. These postflight
calibration checks all indicated an increase in the shortwave channel sensitivity since launch (see
Table 5 of Jacobowitz et al., 1984a). Additionally, it was discovered that one of the shortwave
scan channels (18) became extremely noisy by the end of 1978 (Jacobowitz et al., 1984a).

Consequently, we have chosen to use only the remaining three shortwave scan charmels (15-17)
in our analysis. The differences in the pre and postlaunch sensitivities suggested by Jacobowitz
et al. (1984) have been used to adjust the shortwave radiances obtained from the ERB MAT
product. Each shortwave radiance was adjusted by the appropriate factor shown in Table 2-5.

2.2.2 Longwave Scan Channels

by observing a calibration blackbody and cold space. According to Jacobowitz et al. (1984a),
the deviations of the in-flight sensitivities and offsets remained constant to within £1% of their
initial values (see their Figures 12 and 13). A later review of the longwave scan channel
calibration revealed that a slightly incorrect temperature coefficient was used in the count-
conversion equation leading to the longwave radiances on the ERB MAT (Kyle et al., 1985).
The magmtude of this error was determined to be about 1 Wm-sr! and to be a functlon of the
scanning channel module temperature and the digital counts. An approximate correction for this
error has been determined as a function of the module temperature and digital counts over the
range of expected values (Ardanuy, 1986, personal communication). The correction is in the

10




form of an offset to the channel 19-22 longwave radiances available on the ERB MAT. The
offsets used to adjust the MAT radiances were derived from the data in Table 2-6.

The corrections provided in Table 2-6 were then used to describe the variation of the correction
for the full range of observed temperatures and digital counts. This was achieved by fitting a
cubic spline polynomial to the prescribed values. A two-dimensional look-up table in
temperature and counts was set-up to provide an additive correction to each longwave scanner
radiance as they were processed from the ERB MAT.

Table 2-5. Sensitivity Correction Made to ERB Shortwave Scan Channels
Obtained from the ERB MAT

Channel Sensitivity Correction
15 0.91
16 0.87
17 0.92
18 0.83

*Channel 18 was not actually processed.

Table 2-6. Longwave Scan Channel Radiance Offset Correction as a Function of the Module
Temperature and Digital Counts®

Longwave Radiance Correction (wmsr)
Digital Counts

Module Temperature (°C) -200 -250 -300
18 0.93 0.80 0.66
20 1.03 0.88 0.74
22 1.17 1.00 0.83
24 1.31 1.12 0.93

*Ardanuy, P., Nimbus-7 ERB PTM Coefficient Error Study, ERB Calibration Workshop Minutes,
NASA Goddard Space Flight Center, pp. 25-35, 4-5 August 1982.

11
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3. THE SORTING INTO ANGULAR BIN (SAB) ALGORITHM

The SAB method for processing the Nimbus-7 ERB scanner radiances assumes that during the
averaging period a region (TA or latitude zone) is observed from many viewing directions such
that the flux at the TOA can be evaluated by the following equation:

nfz"f"/zzz(e, ¢) cosBsinddddd
?= (o] o

, M
2% pr/2 .
f f cosOsinBdfde
o (o]
where
6 = satellite zenith angle
_ ¢ = relative azimuth angle (0°, 180° plane contains the Sun in the 0° direction)
M(0,4) =  average observed radiance in an angular bin.
In terms of numerical integration, this becomes
49
F=nW,M./Y W, )
k-1
where
k = angular bin
W, = angular weight; it is the integral of the denominator in (1) over just bin k.

When the angular sampling is incomplete, the weighted average is computed only over those bins
which were sampled. Tests indicated that this procedure was about as accurate as trying to fill
the empty bins by interpolation. In this algorithm, the chief problem concerns the adequacy of
the data sampling. In our procedure, Earth radiation budget products are determined for two
spatial domains, 4.5° latitude zones and (500 km)? target-area regions, and two temporal scales,
daily and monthly averages. The sampling constraints of the ERB scanner prohibit the
evaluation of regional fluxes on a daily basis. The typical number of angular bins sampled for
the (500 km)? regions on a daily basis is around 15, inadequate to get a statistically meaningful
flux. If the regions are sampled for a full month (generally 21-23 days because of restrictions
in the ERB operating schedule), then the average number of angular bins sampled by the scanner
generally ranges from 40 to 45, except near the poles. Figure 3-1 shows the mean number of
angular bins for a region as a function of latitude for shortwave radiances during November
1979. The vertical arrows represent the standard deviation of the mean over all TAs in the
latitude zone. In order to obtain Earth radiation budget products on a daily basis, it is necessary
to increase the spatial domain over which the angular binning is performed. To accomplish this,
we go to 4.5° latitude zones. When this is done, all angular bins are well sampled except bin
numbers 44 to 46, which are typically undersampled or not viewed at all. The void in these bins

13
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occurs because the satellite orbit plane is normally close to the principle (0-180° azimuth) plane
in Figure 2-3. Thus, most of the data in bins 44-46 would be expected to come from the cross-
track scans, but these stop at a satellite zenith angle of 71°. Figure 2-1 shows that regions near
the subsatellite track are well sampled out to the horizon, but that there are significant angular
gaps in the cross-track scanning. Sampling problems vary with latitude, season, and scanner
operating mode. The satellite never passes beyond latitude 81°; thus, the polar zones are never
sampled in enough bins to permit angular integration, while the neighboring zones (81° to 85.5°
latitude) are marginally sampled on a zonal basis.

Table 3-1 shows the mean number of angular bins observed in individual TAs in representative
latitude zones during November 1979. The average number of daily measurements in each bin
is also shown. The daily populations are generally between 5 and 6. The average number of
days that an angular bin is viewed depends on latitude and ranges from 6-9 days in the tropics
and mid-latitudes to 10-22 days near the poles. The populations are averaged only over the days
the bin is observed. Therefore, a typical angular bin near the equator is viewed 30 or 40 times
during the month. The longwave sampling at night is similar but slightly smaller than the
longwave daytime sampling. Also note the falloff in shortwave sampling starting near zone 36.
This represents the decrease in sampling near the terminator, which is moving southward during
November.

Table 3-1. Mean Number of Angular Bins Observed for a Target Area as a Function of Zone (for
November 1979)

No. of Mean No. of Mean No. of
Latitude TAs in Shortwave Daily Average Longwave- | Daily Average
Zone Bounds (°) Zone Bins Population® Day Bins Population
1 85.5-90.0S 3 14.0 41.0 15.0 55.8
2 81-85.58 S 30.1 20.0 30.3 25.8
3 76.5-81.0 16 41.4 10.0 41.4 13.8
4 72.0-76.5 20 42.4 7.6 43.8 9.9
5 67.5-72.0 30 43.1 6.0 45.1 7.1
19 9.0-4.5S 80 44.9 5.4 45.5 5.8
20 4.5-0.0 80 44.7 5.4 45.3 5.8
21 0.0-4.5N 80 44.1 5.5 44.8 5.9
22 4.5-9.0 80 43.9 5.5 44.7 5.9
34 58.5-63.0 40 44.8 5.7 454 6.1
35 63.0-67.5 36 43.1 5.0 45.3 6.6
36 67.5-72.0 30 31.4 4.4 45.2 7.2
37 72.0-76.5 20 7.4 4.8 43.9 9.6
38 76.5-81.0 16 0.0 0.0 40.2 12.2
39 81.0-85.5 9 0.0 0.0 32.9 22.3
40 85.5-90.0N 3 0.0 0.0 15.7 50.3

*First the daily average in each bin is calculated counting only days in which the bin was observed. Then the
mean for all observed bins in a target area is found. Finally, the mean for all observed target areas in the
zone is calculated.
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It was planned to do normal scanning in mode 5 (Figure 2-1) that gives maximum areal and
angular coverage, and this was done for May 1979 through August 1979. However, mode 5 is
actually a combination of modes 3 and 4 in which the side scan is done only to the right or to
the left of the flight path, respectively. In early September, the automatic switching from mode
3 to mode 4 became defective. After that the scanner would operate in mode 3 for 3 days, be
off one day and then operate in mode 4 for the next 3 days. This had only a small effect on the
sampling in the equatorial regions. However, mode 3 sees just one of the poles, while mode 4
sees only the other. Thus, after early September, the polar zone and its nearest neighbor were
viewed only half as often as previously. Since the SAB angular integration could not occur for
the pole zones (1 and 40) at any time, the impact of this was moderate.

The accuracy of the numerical integration is normally only moderately affected by missing bins,
except when their number becomes large. When only one bin is not sampled, it normally is one
of the bins numbered 44-46 from the outer satellite zenith angle ring. However, when several
bins are missing, they usually represent several satellite zenith angle rings. A test was made
based on this fact. Zonal integrals with all bins sampled were tested for the effect of removing
bins. Figures 3-2 and 3-3 show, for June 1979, the effect of removing bins from the albedo
integral in a radial fashion starting with bin 45 and continuing until only the center bin remains.
The order that the angular bins were omitted is as follows:

45,37, 29, 21, 13, 5
48, 40, 32, 24, 16, 8
43, 35,27, 19, 11, 3
47,39, 31, 23, 15, 7
44, 36, 28, 20, 12, 4
46, 38, 30, 22, 14, 6
42, 34, 26, 18, 10, 2
49, 41, 33,25, 17, 9

Several different zones from low to high latitudes are represented in the figure. In general, the
northern hemisphere (Figure 3-2) appears to be falrly insensitive to missing data, except at hlgh
latitudes. In the southern hemisphere (Figure 3-3) we see that problems w1th missing data
become somewhat more serious as the terminator is approached. The longwave test (not shown)
indicates that the longwave integral varies only slightly when the first 18 or so bins are omitted
entirely. The longwave test shows little difference between the northern and southern hemi-
spheres. .
This test shows that missing bins normally will not greatly affect the integral value, but it is, of
_course, not definitive. The data show strong limb darkening in the longwave; the shortwave
have moderate limb brightening at 90° to the principle plane and strong limb brightening close
to the principle plane. The shortwave integral becomes more sensitive at large solar zenith
angles. Because of the poor sampling in bins 44-46, some of the longwave integrals may be
_slightly too large. The shortwave integrals, with 25% less data, will have their largest errors
at high latitudes in the winter hemisphere.
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Because of the sampling problems, the TAs and zonal angular integrals will not give exactly the
same results. Table 3-2 shows, however, that the methods give consistent results in terms of
hemispherical and global averages. As should be expected, the shortwave with 25% less data
shows somewhat poorer agreement than does the longwave.

Table 3-2. Annual Average Difference and Standard Deviation Between Target Area and Zonal-
Daily Monthly Averages
Northern Southem

Hemisphere Hemisphere Global
Longwave (AN) (W/m?) -0.38 + 0.3 -0.54 + 0.4 -0.46 + 0.3
Longwave (DN) (W/m?) -0.24 + 0.5 -0.09 + 0.4 -0.17 + 0.3
Longwave (AVG) (W/m?) -0.18 + 0.2 -0.15 £ 0.5 -0.16 £ 0.2
Shortwave (AN) (W/m?) +0.84 + 1.2 +1.08 + 0.8 +0.99 + 0.7
Albedo (%) +0.25 + 0.2 +0.31 £ 0.2 +0.29 £+ 0.1
Net Radiation (W/m?) +0.96 + 0.6 +0.45 + 0.8 +0.65 + 0.5
*Difference expressed as regional-monthly minus zonal-daily.

On the SAB products tape, monthly mean albedo fields are provided for both 4.5° zone and TA
spatial resolution. For each resolution, the time average over the month was performed as a
simple arithmetic mean of daily albedo values for those days during which shortwave
observations were taken. During the solstice months of June and December, when local solar
insolation is changing only slowly during the month, this procedure is expected to give nearly
the same result as the correct insolation-weighted albedo. Near the poles in early spring and fall,
however, daily values of solar insolation are changing relatively rapidly and the arithmetic
average might yield an incorrect result. This would occur if, for example, an albedo trend
existed during the month. We investigated this possibility for the months of June 1979 and April
1980. Results for April are shown in Figure 3-4, where the monthly mean daily albedos for
zonal resolution are shown as a function of latitude. The solid curve is the unweighted albedo
appearing on tape, while the dotted curve gives the correction required to obtain the insolation-
weighted albedo. The albedo correction is negligible for most latitude bands (+0.2%) but, as
expected near the South Pole for latitudes between -70° and -80°, a negative correction of on
the order of 1% (albedo units) is found. The sign of this correction corresponds to an increase
in daily albedo as the solar illumination decreases during the month. Near the North Pole, a
slight albedo increase (0.3 %) is indicated by the correction curve. This result does not conform
to the usual trend of decreasing albedo with increasing solar declination as the Sun moves into
the northern hemisphere at this time of year. The positive value is probably an indication of the
limit in accuracy of the SAB method within the three latitude bands nearest each pole.
Depending on the ERB operating schedule and the scanner sampling mode (see Section 2 and
Table 2-2), these bands are viewed infrequently (perhaps as infrequently as 5-day intervals), and
a noisy monthly mean is likely to occur. For June, the insolation-weighted monthly albedo was
found to be the same as the SAB albedo to within 0.2% for all latitudes.
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4. MAXIMUM LIKELIHOOD CLOUD ESTIMATION ALGORITHM

This is a statistical procedure for converting an NFOV radiance measurement, M, into a flux
estimate, F. If the radiance field is isotropic, the conversion is simply

F=xM . 3

However, many Earth scenes are highly anisotropic, and a more accurate procedure is required.
The MLCE procedure we use is based on a similar ERBE algorithm, which has been described
in detail by Wielicki and Green (1989). We will, therefore, give a brief description here, and
we will mention some of the differences between the two algorithms. The MLCE method
assumes that the various Earth/atmosphere radiance fields can be adequately described by 12
bidirectional models, derived principly from the Nimbus-7 ERB scanner data (Suttles et al.,
1988). There are five surface types: ocean, land, desert, coast, and snow. These are
designated by a map. There is only one overcast scene (95% to 100% cloud cover), but three
partly cloudy (5% to 50% cloud cover) and three mostly cloudy (50% to 95% cloud cover)
scenes. There are separate partly cloudy and mostly cloudy scenes for ocean, coasts, and
land/desert.

The shortwave scenes are global in extent and are dependent on satellite zenith and azimuth
angle, as well as the solar zenith angle. The longwave limb darkening models depend on season
(spring, summer, fall, and winter), latitude and satellite zenith angle, but not on solar zenith
angle or satellite azimuth angle (Suttles et al., 1989).

After the surface type is determined from a map, the correct cloud scene (clear, partly cloudy,
mostly cloudy, or overcast) is determined by checking the observed shortwave and longwave
radiance pair against the appropriate models. A Maximum Likelihood Estimation (MLE)
algorithm is used.

The probability that a particular cloud cover produces the scanner shortwave radiance measure-
ment, Mgy, and longwave radiance measurement, M, ,, is given by

P, = 1 e 6/2 4)
[2no (SW) o (LW) (1 - 1',;2)]1/2
where
G = 1 ®)
(1-r.2)

Mgy - L.(SW) ]2 (Mgy - L.(SW)) (Mpy - L.(LW)) My - L.(LW) ]2
- 2r, + ____—
o.(SW) o.(SW) o.(LW) o.(LW)
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c =  cloud/geography type

M, w =  longwave radiance measurement

Mgw =  shortwave radiance measurement

L(LW) = model longwave radiance

L.(SW) = model shortwave radiance

0.(SW) =  standard deviation of the elements of a shortwave bidirectional model
o LW) = standard deviation of the elements of a longwave anisotropic model

-
|

correlation coefficient between shortwave and longwave radiances for each
angular bin of the shortwave model.

The cloud scene with the largest probability is chosen and the desired fluxes calculated as
follows:

Fiw = 7 Mw/R(LW) (6)
Fow = T MgW/R(SW) )
R.(LW) =  model scene longwave limb darkening function

R.(SW) = model scene shortwave angular dependence model (ADM).

If only one radrance (longwave or shortwave) was measured then it was used by itself to identify
the cloud scene. In this case, the missing radiance and the correlation coefficient were dropped
from Egs. (4) and (5). At night, of course, only the longwave radiances are present. In
practice, for simplicity, the correlation term was set equal to zero all the time in both algorithms.
This had little effect on the mean results. Additional tuning and ad_]ustment of the models was
required in order to get the best results. This tuning differed somewhat between the Nimbus
ERB and the ERBE cases so that the end algorrthms are not identical.

If the models and scene identification procedure worked perfectly, then the calculated longwave
and shortwave fluxes from a given scene could be independent of the satellite zenith angle. In
practice, however, at large satellite zenith angles, the calculated longwave flux values were t00
small and the shortwave fluxes too large. This is shown in Figures 4-1 and 4-2. For June 1979,
the ascending node longwave fluxes and observed albedos from 60°S to 60°N latitude were
collected by satellite zenith angle and plotted. When the satellite was near the zenith, the
average OLR was 254 W/m?, but this dropped to 235 W/m? when the satellite was near the
horizon. In the shortwave case, the average albedo was 23.9% when observed near the zenith,
but rose to 26.3% when observed near the horizon. Comparison with both the Nimbus SAB
results and the WFOV measurements indicated that the MLCE algorithm yielded incorrect results
from measurements made at large satellite zenith angles. This is a fairly serious problem in the
Nimbus ERB case, because the scanner is designed to take considerably more measurements at
large zenith angles than at small ones. It was decided to reject all measurements made at
satellite zenith angles greater than 75°. This produced reasonable agreement with both the SAB
and WFOV measurements (see Table 5-2), but the MLCE albedos may be about 1% too large.
The ERBE scanner has a fixed aperature whose footprint becomes quite large near the horizon.
For this and other reasons, the ERBE algorithm, from the beginning, rejected all satellite zenith
angles larger than 70°. When Brooks and Fenn (1988a,b) changed the ERBE algorithm to
accept satellite zenith angles greater than 70°, they obtained results similar to ours.
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These MLCE algorithm problems at large satellite zenith angles may be partially because of
deficiencies in the models, but, at least in the shortwave case, much of it comes from ambiguities
in scene identification, particularly over the ocean. Near the horizon, measured radiances from
clear and overcast ocean scenes may be at times nearly identical, but the integrated shortwave
fluxes might differ by a factor of two or more. The model radiance standard deviations used in
Egs. (4) and (5) are considerably larger for overcast scenes than for clear scenes. Thus, in such
a case, the algorithm will usually decide that the scene is more probably overcast (or mostly or
partly cloudy) than clear. The problem is compounded by the fact that because of geometric
considerations, the observed cloud amount is normally larger at the horizon than at the nadir.
This is illustrated in Figure 4-3. In Figure 4-4, the scene identification is shown as a function
of satellite zenith. Averages are shown for June 1979 for measurements taken between 60°S and
60°N latitude. Brooks and Fenn (1988a,b) obtained similar results from the ERBE algorithm
using ERBE scanner measurements and accepting satellite zenith angles past 70°.

The ERBE team did some additional tuning of their algorithm, and these additions are not
present in the Nimbus ERB algorithm. Considerable interest in the clear-sky radiances has
developed (Ramanathan et al., 1989a,b; Ardanuy et al., 1989), and most of these additions aim
at improving the clear-sky products. In determining cloud-scene probabilities, the ERBE team
multiplies the MLE probabilities (Eq. 4) by a priori climatological cloud-scene probabilities
derived from the Nimbus-7 cloud data set (see Wielicki and Green, 1989). The different model
cloud-scene probabilities have large overlap regions, and this procedure was used to push the
choices in the climatologically correct direction. For instance, it increases the amount of clear
desert regions identified. When we applied these a priori factors to the Nimbus-7 ERB data,
however, we found that the number of clear ocean regions became extremely small in many
regions, including some where few clouds were known to be present. In particular, no clear-sky
regions were found at night over very large ocean regions. Because of this, we did not use the
a priori cloud-statistic factors. It should be emphasized that the use of the a priori cloud factors
seems to have very little effect on the all-sky fluxes determined by the MLCE algorithm, even
though they do readjust the various component cloud-scene fluxes; this is true in both the
Nimbus-7 ERB and the ERBE products.

Finally, it should be noted that in the Nimbus-7 ERB algorithm, we used just the 12 sets of solar
zenith angle dependent model scene albedos presented in Suttles et al. (1988). However, over
land and desert, the ERBE team introduced many subcategories dependent on vegetation cover
desert albedo characteristics. This undoubtedly improved their clear-sky identifications over land
and desert.

The MLCE radiance to flux conversion algorithm is a great improvement over older such
procedures such as the isotropy approximation (Eq. 3) or the original Nimbus-7 ERB algorithm
(Jacobowitz et al., 1984a). However, it is also much more complicated and must be applied with
care and tuned to the data set being processed.
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5. DIURNAL CORRECTION MODELS

The Nimbus-7 satellite is in a Sun-synchronous orbit and observes most of the Earth twice a day,
once near noon and once near midnight local time. Some assumptions, therefore, must be made
in order to estimate the average diurnal OLR and albedo. For the OLR, it is assumed that the
mean of the noon and midnight measurements also represents the diurnal mean. A study by Kyle
et al. (1990) found this to be statistically a very good approximation over the ocean in the mean,
but that it was 1% or 2% too high over land. Over deserts in the summer this approximation
i1s 2% too large.

Diurnal models of how the albedo varies with solar zenith angle are used to estimate the daily
averaged albedo from a once-a-day observation. Different sets of diurnal models were used in
the SAB, MLCE, and WFOV global Calibration Adjustment Table (CAT) production programs.
This is due partially to differences in the measurements and the way they are treated in the
algorithms, but historical development is the chief reason. In 1979 the Nimbus-7 ERB team
picked diurnal models to use in the NFOV and WFOV processing. For the NFOV they chose
three scene-dependent models (ocean, land/cloud, and snow) based on the work of Raschke et
al. (1973). They also formed a scene-independent (90% cloud/land +10% ocean) model from
these for use with the WFOV measurements (Kyle et al., 1986). When the new global CAT
algorithm was adopted in 1985, it was decided to keep the original WFOV diurnal albedo model.
In 1986, when the NFOV algorithm SAB and the WFOV-enhanced resolution algorithms were
being developed, the new ERBE models became available (Brooks et al., 1986). For this work,
five of the ERBE models (ocean, land, desert, snow, and overcast) were chosen, together with
time-averaged cloud fields from the Nimbus-7 cloud data set (Stowe et al., 1988, 1989). The
models used are shown in Table 5-1. Our MLCE algorithm is based directly on the ERBE
procedure so it, of course, uses all 12 of the ERBE albedo diurnal models. The partly cloudy
and mostly cloudy ERBE models lie between the clear and cloud models shown in Table 5-1,
but they are not a linear function of the clear and cloud models and the cloud fraction.
Parenthetically, it should be noted that, while we used the models described in Brooks et al.
(1986) and Suttles et al. (1988), the ERBE team has since introduced modified clear desert and
mostly cloudy over land/desert models. Thus, differences in diurnal models combine with
differences in the calculation of the observed albedos to produce differences in the Earth
radiation budget products.

Monthly globally averaged OLR and albedo from both the old and new NFOV Nimbus-7 ERB
algorithms are listed in Table 5-2 for July 1979 and January 1980, together with the
corresponding WFOV values. In addition, both Nimbus-7 WFOV and ERBE scanner averages
for July 1985 and January 1986 are shown for comparison. In the old NFOV algorithm,
observed albedos were not listed, but the diurnally corrected values were nearly 10% larger than
the WFOV values. The new SAB observed albedos vary from 0.4% smaller in July to 1.8%
larger in January than the observed global CAT albedos. As expected, our MLCE calculations
of the observed albedos are somewhat larger (2%) than the SAB values. However, the mean
SAB diurnal correction factor is about 2.5% smaller than that for the global CAT, while the
mean MLCE factor (1.12) is the same as that for the global CAT. Thus, the diurnally averaged
SAB albedos are smaller and the MLCE albedos larger than the global CAT values. Finally,
global CAT and the new ERBE scanner albedos are compared for July 1985 and January 1986.
The two values are identical in July, while the ERBE value is about 1% larger in January.
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Table 5-1. ERBE and Nimbus-3 Directional Reflectance Models
Range of cos
($o) Ocean Land Snow Desert Cloud Nimbus-3
1.0-0.9 1.00 1.00 1.00 1.00 1.00 1.00
0.9-09 1.08 0.98 1.00 1.01 1.02 1.00
0.8-0.7 1.20 1.02 1.01 1.02 1.07 1.09
0.7-0.6 1.33 1.04 1.01 1.03 1.13 1.18
0.6-0.5 1.51 1.09 1.02 1.04 1.18 1.30
0.5-04 1.75 1.16 1.02 1.06 1.25 1.41
0.4-0.3 2.12 1.28 1.02 1.09 1.32 1.56
0.3-0.2 2.67 1.44 1.01 1.13 1.39 1.68
0.2-0.1 3.53 1.69 0.97 1.21 1.46 1.78
0.1-0.0 4.40 2.04 0.93 1.31 1.52 1.84
The Nimbus-3 model was obtained from Table 2 of Hucek et al. (1987). The ERBE models come
from Brooks et al. (1986).

As a test, the WFOV scene-independent diurnal model was applied to the SAB data for the
months of July 1979 and January and April 1980. The global mean results are shown in Table
5-3 as differences between the ERBE and WFOV directional model results. The WFOV
directional model produces mean diurnal albedos just a little larger than the MLE albedos.
Recall, however, that only five of the ERBE models (see Table 5-1) are used in the SAB
processing. As mentioned above, the use of all 12 models in Nimbus ERB MLE processing
produced a mean diurnal correction similar to the WFOV model value. The use of a scene-
independent diurnal model introduces regional errors even if the global mean is correct.
Regional SAB albedos computed using both the scene-dependent and scene-independent models
are compared in Table 5-4. In the mean, the scene-independent correction factor is larger (see
Table 5-3), but for clear ocean scenes, the scene-dependent model yields larger albedos. Also
note the large differences in the clear desert and snow cases.

Our conclusion is that the observed MLCE albedos are slightly too large, but that the MLCE
diurnal correction factors are, in the mean, slightly better than the SAB factors. This would
indicate that cloud diurnal correction models should vary with cloud amount and probably with
cloud type. However, since both cloud amounts and types often vary during the day, there is
a limit to how accurately regional diurnal albedo averages can be estimated from once-a-day
observations. The ERBE data set has an advantage here, because the ERBS satellite observes
regions between 57°S and 57°N latitude at least once during every hour of the day in 37-day
cycles.

The OLR derived from the global CAT, SAB, and MLCE algorithms normally agree to better
than 1%. The largest difference shown in Table 5-2 is for July 1979, where the SAB ascending
node value is 1.1% higher than the global CAT value. Note that the global CAT and ERBE
scanner averages agree to 0.5% or better in July 1985 and January 1986. Overall, the new
Nimbus-7 ERB products show a good internal agreement, as well as a quite reasonable
agreement with the independent ERBE data set. Some regional values, of course, show larger
variations than indicated in Table 5-2. In addition, the WFOV sensors smooth the regional
values so that regional WFOV and NFOV products are not directly comparable (see Kyle et al.,
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1990). The biggest uncertainty lies in the models used to convert observed to daily averaged
albedos. Here the Nimbus WFOV products suffer regionally, because a scene-independent
model is used. The SAB single-cloud model also appears inferior to the multiple-cloud models
used by the MLCE algorithm. The global CAT, SAB, and MLCE products are all of good
quality and can be recommended for most climate studies.
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Table 5-3. Comparison of Hemispheric/Global Averages of Daily Averaged Albedo and Net Radiation

Using ERBE and WFOV Directional Models

DAILY AVERAGED ALBEDO (%)

July 1979 January 1980 April 1980
Northern Hemisphere -1.3 -0.8 -1.3
Souther Hemisphere -0.5 -1.3 -0.7
Global -1.1 -1.1 -1.1
NET RADIATION (W/m?)*
Northern Hemisphere +5.9 +1.8 +5.3
Southern Hemisphere +1.1 +6.1 +2.0
Global +3.5 +4.0 +3.7

*Difference between monthly averaged values expressed as ERBE model minus WFOV model based on

Nimbus-7 ERB scanner observations processed using a direct SAB method of integration.

Table 5-4. Comparison of Regional Daily Averaged Albedo Using Scene-Dependent SAB
(ERBE) and Scene-Independent (WFOV) Diurnal Models for July 1979
A Models
Region SD-ERBE SI-WFOV (%) Cos {,.
Clear Land
(Northern Australia) 20.6 21.7 -1.1 0.79
Clear Land
(South Central Africa) 16.1 17.0 -0.9 0.84
Clear Desert
(Sahara) 31.5 34.9 -3.4 0.99
Clear Ocean
(Southeastern Pacific Ocean) 12.7 12.2 +0.5 0.88
Clear Ocean
(Southeastern Pacific Ocean) 11.8 11.0 +0.8 0.91
Clear Snow
(Arctic Ocean) 48.4 52.1 -3.7 0.51
Overcast
(India) 36.6 38.5 -1.9 0.99
Overcast
(Bay of Bengal) 35.9 37.7 -1.8 0.98







6. THE EARTH’S RADIATION BUDGET, 1979/80

The Sun is the original energy source for both life on Earth and the Earth’s climate system.
TOA net radiation maps show where the solar energy is principly absorbed. Figures 6-1 to 6-4
are, respectively, the net radiation maps for July and October 1979 and January and April 1980.
The dashed contours indicate negative values where more energy is lost than is received.

In July (Figure 6-1), the subsolar point is a little south of the Tropic of Cancer, while the
maximum heating occurs in the ocean slightly north of this line. The land areas are normally
less efficient than the oceans in absorbing solar energy, and this is particularly true of the
deserts. Note the negative net radiation in the east central Sahara. Also note the local minima
in the net radiation off the west coasts of California, South America, and southern Africa. These
are associated with persistent fields of low stratus clouds that block the incident solar flux. Their
relatively low, warm cloud tops allow efficient escape of the thermal infrared.

Figures 6-2 (October) and 6-3 (January), show how the net radiation maxima move southward,
tracking the subsolar point. In January, with the Sun at perihelion, a broad maximum covers
much of the southern ocean on either side of the Tropic of Capricorn. It bulges more to the
south than to the north, however. As in the north, the southern land masses are relatively poor
absorbers of net radiation. By April, Figure 6-4, the net radiation maxima have moved back
north of the Equator.

Examples of the OLR and albedo fields are shown, respectively, in Figures 6-5 and 6-6 for July
1979. There is a strong anticorrelation between the OLR and albedo fields. The OLR high of
298 W/m? in the Pacific west of Peru is associated with an albedo low. Most albedo and OLR
maxima and minima over the ocean are similarly linked at low- and mid-latitudes. In contrast,
both the OLR and albedo are high over the Sahara, where both are chiefly dependent on the
surface conditions rather than on the cloud fields. This explains the low net radiation there.

Comparing the OLR and albedo maps with the net radiation (Figure 6-1) shows distinctly
different patterns. However, the local net radiation maxima tend to associate with low albedo
values. But note that there is not a strong correlation of the longwave maxima with the net
radiation maxima.

Further analysis of the Earth’s radiation budget, using Nimbus-7 data, can be found in Hartmann
et al. (1986), Jacobowitz et al. (1984b), Kyle et al. (1986), Ramanathan (1987), and Smith and
Smith (1987).
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7. THE SCENE RADIANCE TAPE (SRT)

7.1 INTRODUCTION

Nimbus-7 ERB scanner measurements for the period May 1979 through May 1980, were read
from the ERB MATS, sorted by STA and satellite-viewing angle and stored on the SRTs as
described in Section 2. The Earth is divided into 18,630 STAs which are roughly equal in area.
At the Equator, an STA is 1.5° latitude by 1.5° longitude. The latitude dimension remains
. fixed, but the longitude increases with latitude and is 40° at the poles. Over each STA, the
upward hemisphere is divided into 85 angular bins, but these are reduced to 49 bins by assuming
symmetry about the (zenith/Sun) plane. Each 104-minute orbit begins and ends on the
descending node (DN) near the subsatellite track crossing of the Equator at a time near local
midnight. On the ascending node (AN), the satellite crosses the Equator near local noon.

For each orbit (ascending and descending nodes) longwave and shortwave radiance observations
are collected and accumulated in their appropriate ERB STA and viewing angle bin. At the end
of the orbit, the accumulated radiances are averaged. Because the Earth rotates slowly when
compared to an orbital period, scenes observed on AN are different from those observed on DN.
The result is that a greater subset of STAs are viewed during a single orbital pass, but with less
angular coverage. The number of observations, and the variation about the mean is also
recorded and written to magnetic tape for all locations and angular bins that were observed by
the scanner.

The number of STA scenes and the number of angular bins that are viewed by the scanner for
each orbit depends on the scan mode of the instrument (see Figure 2-1). The typical number of
STA scenes and angular bins that are observed for the primary scan modes are shown in Table
7-1. In Table 7-2, the mean number of STA scenes and mean number of angular bins for each
orbit are also provided. In general, between 4-6 thousand scenes are observed from 1-14
different angular views. Scan modes 3 and 4 provide the best angular sampling, while scan
mode 5 gives the best spatial coverage. The scanner operated primarily in scan mode 5 from
February 1979 through early September 1979, and exclusively in modes 3 and 4 from mid-
September 1979 until the scanner failure on June 20, 1980.

The Scene-Radiance Tapes were processed for a continuous 13-month period from May 1979
through May 1980. The data set consists of a total of 39 tapes. Table 7-3 provides the NOPS
sequence numbers for each tape along with the days of data that are available.

7.2 TAPE CHARACTERISTICS

An individual Scene-Radiance Tape (SRT) contains a standard 630-byte NOPS header, up to 8
days of sorted and averaged scanner radiance observations, and the standard NOPS Trailing
Documentation File (TDF). All SRTs are 6,250 BPI and have a maximum of 10 files (NOPS
header, 8 data days, and TDF). The data files are composed of numerous 28,200-byte physical
record blocks. Each physical record contains 150 logical records (LRs) which are 188 bytes in
length. An LR contains 1,504 bits (94 16-bit words). Each LR contains information about the
average observed radiances for an individual ERB STA scene. The first five words in each LR
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Table 7-2. Mean Number of STA Scenes and Angular Bins/Scene Observed by the Nimbus-7 ERB Scanner
as a Function of Operating Mode for Each Orbit
Number of Angular Bins
Total Number Standard
of Scenes Mean Deviation
Scan Mode - 1 5000 4.2 3.5
Scan Mode - 3/4 4100 4.9 3.3
Scan Mode - 5 6250 34 2.5
Nadir 1100 1.1 0.3

identify (1) the year; (2) the day of observation; (3) an Earth grid location, consisting of the zone
number x 100 added to the relative TA number within the zone; (4) the sequential target number
(1-2,070); and (5) the orbit number. The ERB scanner status, orbital node, and STA number
are given in Word 9 and an LR continuation flag is indicated in Word 10. The remainder of the
record contains radiance statistics and related satellite and solar parameters. The LR layout can
accommodate up to 7 different angular views for each ERB STA. The mean number of angular
views made by the ERB scanner on an orbit basis for an STA is generally less than 7 (see Tables
7-1 and 7-2), resulting in all information for a scene being located in one LR. If more than 7
angular views of an STA scene are recorded in an orbit, then a second LR follows. When this
occurs, an LR continuation flag is set in a record to indicate that it contains information for the
same STA scene as the previous record. If more than 14 different angular views for one STA
scene are observed in an orbit, they are dropped from the processing and do not appear on the
tape. This was found to occur very infrequently, less than 0.3% of the time as may be seen
from Table 7-1. The structure of each LR is shown in Table 7-4.

7.3 TAPE LENGTH ESTIMATE

7.3.1 Data File Length

LOGICAL RECORD SIZE: 94 INTEGER*2 (16-bit) Words
188 bytes total

PHYSICAL RECORD SIZE: 150 LRs
28,200 bytes

One inter-record gap (0.5-inch)

TAPE DENSITY: 6250 bpi
4.51 inches/PR

PHYSICAL RECORD LENGTH: 28,200 bytes/PR and interrecord gap
5.01 inches/PR

DATA FILE LENGTH ESTIMATE: 70,000 LRs (STA-scenes)

467 PRs (70,000 LR/150 LR/PR)
195 ft (467 PR * 5.01 inches/PR)
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Table 7-3. List of Scene-Radiance Tapes Available from NSSDC

Data
NOPS Total No. File Calendar Days
Month Sequence No. of Days Span on Tape
May 1979 AN91211-1 8 2-9 1, 3-5,7-9, 11
ANS1331-1 8 29 13-15, 17, 19-21, 23
ANS91441-1 6 2-7 24, 25, 27-29, 31
June 1979 AN91521-1 8 29 1, 2, 4-6, 8-10
AN91631-1 8 2-9 12-14, 16-18, 20, 21
AN91731-1 7 2-8 22, 24-26, 28-30
July 1979 AN91831-1 8 29 24, 6-8, 10, 11
ANS1931-1 8 29 12, 14-16, 18-20, 22
ANS2041-1 7 2-8 23, 24, 26-28, 30, 31
August 1979 AN92131-1 8 29 1, 3-5,79, 11
AN92241-1 8 29 12, 13, 15-17, 19-21
AN92351-1 7 2-8 23-25, 27-29, 31
September 1979 AN92441-1 8 29 1, 2, 4-6, 8-10
AN92551-1 8 29 12-14, 16-18, 20, 21
AN92651-1 7 2-8 22, 24-26, 28-30
October 1979 AN92751-1 8 29 24, 6-8, 10, 11
AN92851-1 8 29 12, 14-16, 18-20, 22
AN92961-1 7 2-8 23, 24, 26-28, 30, 31
November 1979 AN93051-1 8 29 1, 35,79, 11
AN93161-1 8 29 12, 13, 15-17, 19-21
AN93271-1 6 2-7 23-25, 27-29
December 1979 AN93351-1 8 29 1-3, 5,7, 9-11
AN93471-1 8 29 13-15, 17, 19, 21-23
AN93591-1 6 2-7 25-27, 29-31
January 1980 ANOOOZl-i 8 29 2-4, 6-8, 10, 11
ANO00121-1 8 29 12, 14-16, 18-20, 22
AN00231-1 7 2-8 23, 24, 26-28, 30, 31
February 1980 AN00321-1 8 29 1, 3-5,79, 11
AN00431-1 8 29 12, 13, 15-17, 19-21
ANO00541-1 6 2-7 23-25, 27-29
March 1980 AN00621-1 8 29 24, 6-8, 10, 11
AN00721-1 8 29 12, 14-16, 18-20, 22
ANO00831-1 7 2-8 23, 24, 26-28, 30, 31
April 1980 AN00921-1 8 29 1, 3,5 79,11, 12
ANO01041-1 8 29 13, 15-17, 19-21, 23
ANO1151-1 5 2-6 24, 25, 27-29
May 1980 AN01221-1 8 2-9 1-3,5-7,9, 10
ANO01321-1 8 29 11, 13-15, 17-19, 21
ANO01431-1 8 2-9 22, 23, 25-27, 29-31
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7.3.2 Tape Length Estimate

7.4

File Estimate (FT) Contents

1 0.1 2 630-byte NOPS headers

29 195 Approximately 70,000 STA scenes

10 0.5 Trailing Documentation File (7-9 630-byte records)
TOTAL: 1560.6 ft

PARAMETER DESCRIPTIONS

The descriptions of each parameter contained in the LR are summarized below:

Integer*2
Word Number Parameter
1 Full Year
2 Julian Day
3 Coded TA (latitude zone x 100 + relative TA within a zone). ERB zones
are 4.5° in latitude and counted from the South Pole.
approximately equi-area regions spanning 4.5° x 4.5° latitude/longitude
at the Equator. Within a zone, relative TAs are enumerated westward
from Greenwich Meridian.
4 Sequential TA (1-2,070). TA number counted continuously from the
South Pole to North Pole. o
5 Orbit Number counted from launch date in 10/78
6 Average cosine of the solar zenith angle for the STA for all angular views
(scaled by 10,000). Available only during hours of solar 1Ilum1nat10n
7 Total sunlight hours (in half day) (scaled by 10)
8 Mean daily insolation at TA center (W/m? scaled by 10)
9 ERB scanner status/orbital node/sub-TA (1-9)

Units Digit: (I) ~ Scanning in Mode 1
(2) Scanning in Mode 2
(3)  Scanning in Mode 3
(4) Scanning in Mode 4
(5)  Scanning in Mode 5
(6) Scanning is in nadir

Tens Digit: ( 1) : Descending-Node
(2) Ascending-Node
Hundreds Digit: (1-9) STA Number



The scan status was obtained from the instrument status and scan information words located on
the MAT for each major frame. This information was used to assign the scanner status for each
STA scene according to the status of the first radiance observation in the orbit which falls in the
STA.

10 LR continuation flag
0 - LR contains data for a different STA scene

9 - continuation of angular-bin data for the same STA scene as in the
previous LR.

Each LR will contain up to seven different angular-bin views for an STA scene. If more
angular-bin views are observed, then a second LR will follow with up to seven more angular-bin
views for the same STA. This is noted by the appearance of a value of 9 in the LR continuation
flag word of the second record. If more than 14 angular-bin views are observed for a single
STA, then these will be excluded from the level-1 output tape. This has been determined to
occur for less than 0.3% of the viewed scenes (see Table 7-1).

11-17 Angular-bin number (1-49) corresponding to a set of radiance observations
in this sub-TA.

18-24 Longwave radiance population for each of seven angular-bin views
25-31 Shortwave radiance population for each of seven angular-bin views
32-38 Mean longwave radiance of the observations for each of 7 angular-bin

views (W/m?/sr scaled by 100)

39-45 Mean shortwave radiance of the observations for each of 7 angular-bin
views (W/m?/sr scaled by 100)

46-52 Mean bidirectional reflectance for each of 7 angular-bin views (sr' scaled
by 10,000). Bidirectional reflectance is defined as the ratio of the
observed shortwave radiance to the incoming insolation.

53-66 Sum of squares of longwave radiance observations for each of 7 angular-
bin views ((W/m?/sr)? scaled by 10) (32-bit words)

67-80 Sum of squares of bidirectional reflectances for each of 7 angular-bin
views (sr? scaled by 107) (32-bit words)

81-87 Average relative azimuth angle observed for each of 7 angular-bin views
(deg scaled by 100). Present only during daylight.

88-94 Average satellite zenith angle observed for each of 7 angular-bin views
(deg scaled by 100). Present only during daylight.
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7.5 SPECIAL NOTES

a.  As indicated in Table 7-4, LRs consist almost exclusively of 16-bit data words. The
two exceptions are the sums of squares of the longwave and shortwave radiances for
a given scene and angular view. These parameter values routinely exceed the storage
capacity of 2-byte signed integer words and are, therefore, stored as 4-byte integer
words. These parameters occupy byte positions 129 through 184 in the LR.

b.  When scaled by 100, the mean shortwave radiance for a scene and angular view
occasionally exceeds the 32,767 maximum value of a 2-byte signed integer word.
These values are stored, nevertheless, in the available 16 bits with the caveat that all
16 bits represent the magnitude of the number and its sign is positive. If the 2 bytes
are interpreted as a conventional integer*2 FORTRAN word, a negative value results.

c.  The ascending and descending node phases of an orbit are defined by the Z-component
of the satellite velocity vector in an Earth-centered Cartesian coordinate system with
positive Z-axis in the direction of the North Pole. Ascending node corresponds to a
positive Z-component of velocity.

d.  Missing or nonexistent data are indicated by the appearance of the fill value, zero.
Following the last valid observation of an orbit, the remaining LRs of a physical
record are O-filled and readily noted by the 0 value obtained for the coded grid location
in 2-byte integer word number 3 of the LR.

e.  Angular parameters in the form of the cosine of the solar zenith angle, satellite zenith
angle, and relative azimuth are not accumulated for a scene and angular bin for
observations for which a shortwave radiance is unavailable. This includes all
observations with solar zenith angles greater than 88° (i.e., little or no solar
illumination) and daytime observations whose shortwave component was rejected
during quality control checks. For these cases, some indication of the satellite
geometry is still available in the angular bin numbers provided.

f. Mean daily insolation, 2-byte integer Word 8, is computed at the midpoint of the
sequential TA (1-2,070) given in 2-byte integer Word 4.
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8. THE SORTING INTO ANGULAR BINS (SAB) TAPE

8.1 DATA SET

A Sorting into Angular Bins (SAB) algorithm (see Section 3) has been used to process the
Nimbus-7 ERB NFOV data set. Although the Nimbus-7 scanner operated for nearly 20 months,
from November 16, 1978 to June 20, 1980, we have chosen to use this algorithm to produce a
daily- and monthly-averaged Earth radiation budget for the 13-month period from May 1979 to
May 1980. Because of poor sampling, primarily at night, the remaining months were not
processed using this method. On a spatial scale, both 4.5° latitude zone and regional TA (i.e.,
approximately 500-km x 500-km grid elements) averages are derived, although sampling
deficiencies limit the availability of the latter to monthly fields only. Observed zone and TA
radiance populations within the 49 angular bins of the upwelling hemisphere (see Figure 2-3) are
also given, as well as their means and standard deviations. Symmetry is assumed about the
principal plane of the sun so that radiances viewed at the same satellite zenith angle, but at the
opposite relative azimuths of +\, are collected and averaged within a single bin. Ancillary data
used in computing the ERB products are also provided. These include the scene classification
of each ERB TA consisting of (a) the geographic composition (percentage of ocean, land, snow,
and desert) and average total cloud cover of each target for bimonthly periods and (b) scene-
dependent directional models used to convert the observed orbit-dependent albedo to a daily
averaged parameter. These ERB products are provided on one 6,250-bpi magnetic tape which
is available from the NSSDC located at the NASA/GSFC in Greenbelt, Maryland.

8.2 TAPE CHARACTERISTICS

The complete Nimbus-7 ERB NFOV SAB product data set is stored on a standard 6,250-bpi
magnetic tape consisting of 15 files. The first file contains two standard NOPS header records.
The next 13 files each contain one month of radiance statistics, Earth radiation budget products
and ancillary data for all time and space scales. The last file contains a standard NOPS trailing
documentation file (TDF), which provides the input tapes used to generate the SAB tape. An
outline of the arrangement of the tape is provided in Table 8-1. The data product files (2
through 14) are composed of numerous 21,000-byte physical records, which are arranged in a
chronological sequence of daily zonal data records, followed by the monthly zonal records and,
finally, the monthly TA records. Each physical record contains 10 LRs of 2,100 bytes or,
equivalently, 1,050 2-byte integer words. The first 2-byte word of each LR identifies the record -
type as either daily zonal, monthly zonal, or monthly TA. While these LRs contain equal
amounts of occupied storage (i.e., 1,050 2-byte words), the zonal and TA records differ in the
number of ERB parameters actually provided, and in the arrangement of the given parameters
within the record. The internal structure of zonal records is shown in Table 8-2 and is the same
for both daily and monthly averaging intervals. As indicated along the left edge of the table,
these records contain 909 2-byte (454 1/2 4-byte) data values and 141 2-byte words of fill
values. For monthly LRs, there are 523 2-byte data values and 527 2-byte fill values. Within
both tables, the multiplicative factors used in producing the stored values are given for each
parameter type, and within parentheses, the amount of storage (in bits) occupied by that
parameter. Only monthly records exist for the individual TAs. The arrangement of the TA
monthly record is described in Table 8-3. In Table 8-4 we provide an estimate of the length of
the data files found on the SAB tape.
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Table 8-1. Outline of ERB-7 NFOV SAB Product Tape
File No. Description

1 Two standard NOPS 630-byte header records

2 Daily and Monthly Products for May 1979

3 Daily and Monthly Products for June 1979

4 Daily and Monthly Products for July 1979

5 Daily and Monthly Products for August 1979

6 Daily and Monthly Products for September 1979

7 Daily and Monthly Products for October 1979

8 Daily and Monthly Products for November 1979

9 Daily and Monthly Products for December 1979

10 Daily and Monthly Products for January 1980

11 Daily and Monthly Products for February 1980

12 Daily and Monthly Products for March 1980

13 Daily and Monthly Products for April 1980

14 Daily and Monthly Products for May 1980

15 NOPS Trailing Documf:ntation File consisting of copies of standard 630-byte
NOPS header records from input tapes used to generate this output tape

8.3 TAPE LENGTH ESTIMATE

File Estimate (FT) Contents

1 0.1

2-14 08.8/file

15 2.0
TOTAL: 1286.5 ft

2 630-byte records

40 LRs of daily-zonal data repeated for up to 24 data days in
a month (24 days is the maximum number of days that the

ERB instrument was ON for one month)
40 LRs containing monthly-zonal data
2,070 LRs containing monthly target-area data.

Trailing Documentation File (40, 630-byte records)
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Table 8-2. ERB-7 NFOV SAB Product Tape Logical Data Record Format Zonal Daily Monthly Record

WORD
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101

150

199

248

297

346

395

444
445
446
447
448
449
450
451
452
453
454
455

525

MSB LS
32 1
RECORD 1D (16) TIME SCALE (16)
DATA SPAN: YEAR, MONTH, DAY (16) | ZONE (16)

SPARE (16} SPARE (16)

SHORTWAVE RADIANCE POPULATIONS FOR 49 ANGULAR BINS (784)

MEAN SHORTWAVE RADIANCE FOR 49 ANGULAR BINS *10

(784)

ASCENDING-NODE LONGWAVE RADIANCE POPULATIONS FOR 49 ANGULAR BINS (784)

MEAN ASCENDING-NODE LONGWAVE RADIANCE FOR 49 ANGULAR BINS *10 (784)

DESCENDING-NODE LONGWAVE RADIANCE POPULATIONS FOR 49 ANGULAR BINS (784)

MEAN DESCENDING-NODE LONGWAVE RADIANCE FOR 49 ANGULAR BINS *10 (784)

STANDARD DEVIATION OF MEAN ASCENDING-NODE LONGWAVE RADYANCE FOR 49 ANGULAR BINS *100 (784)

STANDARD DEVIATION OF MEAN DESCENDING-NODE LONGWAVE RADIANCE FOR 49 ANGULAR BINS *100 (784)

MEAN BIDIRECTIONAL REFLECTANCE FOR 49 ANGULAR BINS *1000 (784)

STANDARD DEVIATION OF MEAN BIDIRECTIONAL REFLECTANCE FOR 49 ANGULAR BINS *10,000 (784)

POPULATION-WEIGHTED MEAN COSINE OF THE SOLAR ZENITH ANGLE FOR 49 ANGULAR BINS *10,000 (784)

MAXTMUM COSINE SOLAR ZENITH ANGLE FOR 49 ANGULAR BINS *10,000 (784)

MINIMUM COSINE SOLAR ZENITH ANGLE FOR 49 ANGULAR BINS *10,000 (734)

STANDARD DEVIATION COSINE SOLAR ZENITH ANGLE FOR 49 ANGULAR BINS *10,000 (784)

MEAN COSINE SOLAR ZENITH ANGLE FOR 49 ANGULAR BINS *10,000 (784)

NUMBER OF STA SCENES OBSERVED FOR ASCENDING-NODE LONGWAVE FOR 49 ANGULAR BINS (784)

NUMBER OF STA SCENES OBSERVED FOR DESCENDING-NODE LONGWAVE FOR 49 ANGULAR BINS (784)

NUMBER OF STA SCENES OBSERVED FOR SHORTWAVE FOR

49 ANGULAR BINS (784)

AVERAGE ASCENDING-NODE LONGWAVE FLUX *10 (16)

AVERAGE DESCENDING-NODE LONGWAVE FLUX *10 (16)

DAILY-AVERAGE LONGWAVE FLUX *10 (16)

AVERAGE SATELLITE-OBSERVED SHORTWAVE FLUX *10 (16)

AVERAGE SATELLITE OBSERVED ALBEDO *10 (16)

DAILY-AVERAGED ALBEDO *10 (16)

NET RADIATION *10 (16)

AVERAGE SOLAR INSOLATION *10 (16)

AVERAGE NUMBER DAYLIGHT HOURS *10 (16)

AVERAGE COSINE SOLAR ZENITH ANGLE *10,000 (16)

DAILY-AVERAGED SHORTWAVE FLUX *10 (16)

SPARE (16)

ERBE DIRECTIONAL MODEL COEFFICIENTS-X° *1000 (16)

ERBE DIRECTIONAL MODEL COEFFICIENTS-XZ *1000 (16)

ERBE DIRECTIONAL MODEL COEFFICIENTS-X *1000 (16)

ERBE DIRECTIONAL MODEL COEFFICIENTS-OFFSET *1000 (16)

GEOGRAPHY: PERCENT OCEAN *10 (16)

GEOGRAPHY: PERCENT LAND *10 (16)

GEOGRAPHY: PERCENT SNOW *10 (16)

GEOGRAPHY: PERCENT DESERT *10 (16)

GEOGRAPHY: PERCENT CLOUD-COVER *10 (16)

FILL (16)

FILL (2240)
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Table 8-4. ERB NFOV SAB Data File Length Estimate

LOGICAL RECORD SIZE: 1,050 INTEGER*2 (16-bit) Words
2,100 bytes total

PHYSICAL RECORD SIZE: | 10 Logical Records
21,000 bytes
One inter-record gap (0.5-inch)

TAPE DENSITY: 6,250 bpi

3.86 inches/PR B
PHYSICAL RECORD 21,000 bytes/PR /6,250 bytes/inch + 0.5 inch
LENGTH:

ESTIMATE OF NUMBER 40 (zones) * 24 (# days) + 40 (zones, monthly) + 2,070 (TA, monthly) =
OF LOGICAL RECORDS: 3,070 LR’s =~ 307 PR’s

FILE LENGTH ESTIMATE: | 98.8 ft (307 PR’s * 3.86 inches/PR)

8.4 PARAMETER DESCRIPTION
8.4.1 Record Identifiers

Each LR is described by the first 16-bit integer word as follows:

. 11 = Zonal-Daily Record
. 12 = Zonal-Monthly Record
. 13 = Target-Area Monthly Record

The time scale of each LR is described in the second 16-bit word as follows:

. 1 = Daily Record
. 2 = Monthly Record

The day, month, and year of each LR is given in the third 16-bit word as follows:

DATA SPAN = (DAY OF MONTH)*1000 + MONTH (01=JAN)*10 + YEAR

where
YEAR = 9 FOR 1979
YEAR = 0 FOR 1980

For monthly records, the day value is set to zero.
8.4.2  Earth Radiation Budget Data

Parameter values are given, in general, for both TA and 4.5° zonal band resolution. Among
these are longwave and shortwave radiances, M (W/m%sr scaled by 10), longwave and
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shortwave fluxes, F (W/m? scaled by 10), solar insolation, I (W/m? scaled by 10), albedo a (%
scaled by 10), and bidirectional reflectance p=M/I (sr! scaled by 1,000).

8.4.2.1 Daily Zonal Band Data

As

a function of the 49 satellite zenith and relative azimuth bins of Figure 2-3, the following

parameters are provided:

As

Daily ascending node shortwave radiance population

Daily ascending node longwave radiance population

Daily descending node longwave radiance population

Daily averaged population weighted shortwave radiance

Daily averaged ascending node population weighted longwave radiance

Daily averaged descending node population weighted longwave radiance

Standard deviation of the daily ascending node longwave radiance

Standard deviation of the daily descending node longwave radiances

Standard deviation of the daily ascending node bidirectional reflectances

Daily averaged population weighted cosine of the solar zenith angle

Daily averaged population weighted bidirectional reflectance

Daily averaged solar insolation

Average number of daylight hours in the half-day

Daily statistics for the cosine of the solar zenith angle: (1) standard deviation of the mean,
(2) maximum cosine, (3) minimum cosine, and (4) the mean determined by weighting the
cosine from a scene equally with all other scenes. An individual scene is defined as a STA
region (there are nine equal area regions in each ERB TA shown in Figure 1) when viewed
from one ascending or descending node orbital pass.

The number of individual scenes observed by the ERB scanner for daytime longwave,
nighttime longwave, and shortwave observations

a function of 4.5° zones only without further subdivision into viewing angle bins, we have

Average ascending node longwave flux

Average descending node longwave flux

Daily average (ascending and descending) longwave flux

Average shortwave flux

Daily averaged shortwave flux

Average satellite observed albedo

Daily averaged (diurnally adjusted) albedo

Net radiation

Average solar insolation

Average number of daylight hours in the half day

Average cosine of the solar zenith angle

ERBE directional model (DM): the DM is described using a cubic polynomial of four zonal
coefficients (a;...a,). The coefficients form an equation which is evaluated as a function of
the cosine of the solar zenith angle (X) as follows:

DM = a,X* + a,X* + a, X + a,
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Scene classification: surface composition in percent areal coverage of ocean, land, snow,
desert, and percent total cloud cover. In deriving diurnal models, the cloud coverage is
assumed to be distributed uniformly throughout the zonal band.

8.4.2.2 Monthly Zonal Band Data

The parameters provided in the monthly 4.5° zonal record are identical to those for the zonal
daily record, with the following exceptions:

o No radiance data (filled)
. No directional models (filled)
o No geography or cloud coverage percentage (filled)

Monthly mean fluxes are determined by averaging daily estimates obtained during ERB-on days
rather than, by contrast, integrating monthly mean radiances over the 49 angular bins. Monthly
averaged radiance statistics can be computed, if desired, from the individual daily averages
provided on this tape.

8.4.2.3 Monthly Target Area Data

The parameters provided in the monthly TA records are summarized below. As a function of
the 49 satellite zenith and relative azimuth bins shown in Figure 2-3, the following parameters
are given:

Daily averaged shortwave radiance population

Daily averaged ascending node longwave radiance population

Daily averaged descending node longwave radiance population

Daily averaged ascending node population weighted longwave radiance
Daily averaged descending node population weighted longwave radiance
Standard deviation of the daily ascending node longwave radiances
Standard deviation of the daily descending node longwave radiances
Standard deviation of the daily ascending node bidirectional reflectances
Daily averaged population weighted cosine of the solar zenith angle
Daily averaged population weighted bidirectional reflectance

The following parameters are provided by TA only:

Average number of daylight hours in the half-day
Average ascending node longwave flux

Average descending node longwave flux

Daily averaged (ascending and descending) longwave flux
Daily averaged shortwave flux

Daily averaged (diurnally adjusted) albedo

Net radiation

Average solar insolation

Average cosine of the solar zenith angle
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ERBE directional model (DM): the DM is described using a cubic polynomial of four
coefficients (a,...a,) for the TA. The coefficients form an equation that can be evaluated as
a function of the cosine of the solar zenith angle (X) as follows:
DM = a,X* + 3,X* + 3, X + a,
Scene classification: surface composition in percent areal coverage of ocean, land, snow,
desert, and percent total cloud cover. In deriving directional models, cloud coverage is
assumed to be distributed uniformly over each surface type with the TA.
8.4.3 Explanation of Fill Values

In most instances, a fill value of zero is used to indicate missing or unavailable data. The
exceptions are as follows:

] Zonal Daily/Monthly Data

- Minimum cosine solar zenith angle for 49 angular bins (filled with
+10,000)

- All fluxes and albedos (filled with -10,000)

- Net radiation, average solar insolation, and average number of daylight
hours (filled with -10,000)

- Average STA cosine solar zenith angle not subdivided into angular bin
(filled with 22,222)

. Target Area Monthly Data
- All fluxes and albedos (filled with -10,000)

- Net radiation, average solar insolation, and average number of daylight
hours (filled with -10,000)

- Average cosine solar zenith angle (filled with 22,222)
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9. THE MAXIMUM LIKELIHOOD CLOUD ESTIMATION TAPE

9.1 THE DATA SET

An MLCE algorithm has been used to process the Earth Radiation Budget (ERB) NFOV data
set. Although the ERB-7 scanner operated for nearly 20 months from November 16, 1978
through June 20, 1980, we have chosen to apply this algorithm to data collected only over the
13-month period from May 1979 to May 1980. Prior to May 1979, there were extended periods
when the scanner observations interfered with the short-lived LIMS, and measurements,
therefore, were not taken. The resulting NFOV data set for these months is very sparse,
especially on descending node, and is not included in the final MLCE data product. The input
radiance data were taken from the SRT data set. The resulting Earth radiation budget products,
cloud data, and associated statistics are stored on five 6,250-bpi magnetic tapes, which are
available from the National Space Science Data Center, located at the Goddard Space Flight
Center in Greenbelt, Maryland.

Earth radiation budget products have been produced by the MLCE algorithm at several spatial
and temporal scales and separately for all sky and clear sky conditions by combining parameter
estimates from individual observations into lower resolution time and space average. Daily and
monthly averages are available at STA resolution (166 km)? and at TA resolution (500 km)®.
Daily averages are also given for 40 4.5° latitude zones. In a second averaging procedure, ERB
products are subdivided not only by spatial and temporal scale, but also as a function of satellite
viewing angle bin (see Figure 2-3). Daily parameter values are provided for this method for the
40 latitude zones. Further details of the averaging schemes used for both methods are presented
below.

9.1.1 Subtarget Area (STA) Data

The ERB world grid consists of 2,070 TAs of approximately equal area. These regions are
further partitioned into 9 STAs. These form a 3 x 3 grid within each TA and are numbered 1
to 9, beginning at the southeast corner (see Section 2). Daily and monthly means are available
at STA resolution. Unless otherwise stated, monthly STA averages are derived from sums of
daily STA averages (seec Section 9.3.2.5).

9.1.2 Target Area Data

Daily and monthly average data are also available on a TA basis. Most daily average TA data
are derived from daily average STA data (see Section 9.3.2.2). That is

9
— 1 —_—
TA,-=Y STA; ,
9n-1

where —’I"_A'j is the daily average for the jth TA, S_'l“_fk_j,n represents the daily STA average for each
of 9 subtargets within the jth TA, and it is assumed that each STA has a value. In actual
processing, averages are formed for each TA that has at least one STA filled with data. Monthly
means are computed using the same arithmetic averaging technique from STA monthly means.
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9.1.3 Zonal Data

ERB parameters and statistics are also collected and averaged over 4.5° latitude zones. Most
zonal daily means are computed from STA daily means in the following way (see Section
9.3.2.3):

N
—_1
ZJ”T\J; STA,

where Z- is the daily average for zone j, STA, represents the daily STA average for the nth sub-
target within the jth latitude zone, and N is the total number of STA values used in the
computation.

9.1.4 Zonal and Angular-Bin Data

A second method of presenting daily zonal average data is to sort the ERB products, cloud data,
and associated statistics into 49 discrete satellite-viewing angle bins as shown in Figure 2-3.
Satellite relative azimuth angles of 180° to 360° are grouped with their symmetric counterpart
across the principle plane of the Sun to form eight relative azimuth angle bins. Observations
falling in the outermost zenith angle ring (bins 42-49) were not processed (see Section 4). Zonal
and angular-bin averages were formed in the following way:

N
—_ 1
ZABj'k=-1-\-]Z; X5
In=-

where ZAB;, is the daily average product for latitude zonej and é.n'gruiérigin k, Xj,k is a single
flux or other MLCE product for the same zone and angular bin, and N is the total daily
population in zone j and bin k.

9.2 TAPE CHARACTERISTICS

The Nimbus-7 ERB NFOV MLE product data set is stored on five standard 6,250-bpi magnetic
tapes. Each tape contains three months of data. The 13th month of data exists alone on the fifth
tape. The first file of each tape contains two standard NOPS header records. This is followed
by the data files, one for each ERB-ON day of the month, plus an additional monthly average
file. This sequence of data files is repeated for the remaining months of data contained on the
tape. An outline of the arrangement of the first tape is provided as an example in Table 9-1.

The data files consist of numerous 4,156-byte physical record blocks. The LRs are the same size
(i.e., each physical record contains only one LR). Each LR contains 2,078 16-bit integer words
for a total of 33,248 bits. The first eight words give the time resolution (i.e., monthly or daily)
and type (i.e., subtarget, target, zonal, or zonal angular bin) of the data values along with a
coded parameter number, STA number (if not applicable, set to 0), data scale factor, and the day
(if not applicable, set to 0), month, and year. STA and TA data are given on both a daily and
monthly basis, while zonal and zonal angular-bin data appear only as daily averages. Tables 9-2
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Table 9-1. Outline of a Typical ERB-7 NFOV MLE Product Tape

File No. Description
1 Two standard NOPS 630-byte header records
2-23 Daily products for May 1979
24 Monthly products for May 1979
25-47 Daily products for June 1979
48 Monthly products for June 1979
49-71 Daily products for July 1979
72 Monthly products for July 1979
Table 9-2. ERB-7 NFOV MLE Product Tape Logical Record Format for STA Data
Word Bit
1 Time Scale (16) Data Type (16) 32
3 Parameter Number (16) STA Number (16) 64
5 Scale Factor (16) Calendar Day of 96
Month (16)
7 Month (16) Year (16) 128
9-2078 Data described by the parameter number in
word 3 for the STA named in word 4 for each
of 2070 target areas. (For monthly data,
calendar day = 0).
33248
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through 9-5 show the arrangements of LRs for the four data types. Table 9-6 defines the data
parameter corresponding to each coded parameter number; availability in time, space, and
angular bin categories; and the scale factor applied. Longwave and shortwave fluxes, net
radiation, insolation, and standard deviation are given in W/m’ scaled by 10; albedo and
fractional cloud coverage categories (i.e., clear, partly, mostly, and overcast) are in percent
scaled by 100; and day observation rates are scaled by 100. Within a file, the STA records
appear first, followed in order by the TA, zonal and zonal bin records.

9.3 PARAMETER DESCRIPTION

9.3.1 Record Identifiers

Each LR is described by the first eight 16-bit words as follows:

Word 1-Time Scale 1 = daily
2 = monthly
Word 2-Data Type 11 = daily STA
12 = daily TA

13 = daily zonal

14 = daily zonal angular bin
21 = monthly STA

22 = monthly TA

Word 3-Coded Parameter Number: See Table 9-6 for a summary of parameter numbers and the
corresponding data descriptions

Word 4-STA No.: A number from 1-9 locating the data within a particular TA (set to 0 for TA,
zonal, zonal angular bin data)

Word 5-Scale Factor: The integer number by which the value in stated physical units is
multiplied

Word 6-Calendar Day of Month: 1-31 (set to 0 for monthly data)
Word 7-Month of Year 1-12 |

Word 8-Year: 1979 or 1980 |

9.3.2 Earth Radiation Budget Data

The Earth radiation budget parameters and associated data within each data type are described
in detail in Sections 9.3.2.1 through 9.3.2.6.

62



Table 9-3. ERB-7 NFOV MLE Product Tape Logical Record Format for TA Data

Bit

32

64

96

128

33248

Bit

32

64

96

128

768

Word

1 Time Scale (16) Data Type (16)

3 Parameter Number (16) STA Number (16)

5 Scale Factor (16) Calendar Day of

Month (16)

7 Month (16) Year (16)

9-2078 | Data described by the parameter number in
word 3 for each of 2070 target areas. (STA
number = 0 and calendar day = 0 for monthly
data.)

Table 9-4. ERB-7 NFOV MLE Product Tape Logical Record Format for Zonal Data

Word

1 Time Scale (16) Data Type (16)

3 Parameter Number (16) STA Number (16)

5 Scale Factor (16) Calendar Day of

Month (16)

7 Month (16) Year (16)

9-48 Data described by the parameter number in
word 3 for each of 40 latitude zones. (STA
number and calendar day = 0.)

49-2078 Fill
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Table 9-5. ERB-7 NFOV MLE Product Tape Logical Record Format for Zonal Angular-Bin Data

Word Bit

1 Time Scale (16) Data Type (16) 32

3 Parameter Number (16) STA Number (16) 64

5 Scale Factor (16) Calendar Day of 96
Month (16)

7 Month (16) Year (16) 128

9-48 Data described by the parameter number in

word 3 for zones 1-40 for angular bin 1
(STA and calendar day = 0.)

768
49-88 Same as above for angular bin 2
1408
89-1968 Same as above for angular bins 3-49 31488
Fill
1969-2078 33248

64




Table 9-6. Parameter List

Parameter Time and Spatial Coverage
No. Description Scale Factor
1 AN Longwave Flux STA & TA - D&M, 10
ZN & ZNBN -D
2 DN Longwave Flux STA & TA - D&M, 10
ZN & ZNBN - D
3 Avg. Longwave Flux STA & TA - D&M, 10
ZN & ZNBN - D
4 AN Shortwave Flux STA & TA - D&M, 10
ZN & ZNBN - D
5 Net Radiation STA & TA - D&M, 10
ZN & ZNBN - D
6 Observed Albedo STA & TA - D&M, 100
ZN & ZNBN - D
7 Corrected Albedo STA & TA - D&M, 100
ZN & ZNBN -D
8 Standard Deviation of AN STA - D&M, 10
Longwave Flux ZNBN -D
9 Standard Deviation of DN STA - D&M, 10
Longwave Flux ZNBN -D
10 Standard Deviation of AN STA - D&M, 10
Shortwave Flux ZNBN -D
11 AN LW Population STA - D, ZNBN-D 1
12 DN LW Population STA-D, ZNBN-D 1
13 AN SW Population STA-D,ZNBN-D 1
14 No. Days of Month Observed-AN STA&TA-M 1
Lw
15 No. Days of Month Observed-DN STA&TA-M 1
Lw
16 No. Days of Month Observed-AN STA&TA-M 1
SW
17 Avg. No. of Days of Month TA-M 100
Observed/STA Within Each TA-AN
Lw

STA = Subtarget Area Average

TA = Target Area Average

ZN = Zonal Average

ZNBN = Zonal and Angular-Bin Average

D = Daily Average

M = Monthly Average

AN = Ascending Node

DN = Descending Node
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Table 9-6. Parameter List

Parameter Time and Spatial Coverage
No. Description Scale Factor
18 Avg. No. of Days of Month TA-M 100
Observed/STA Within Each TA-DN
Lw
19 Avg. No. of Days of Month TA-M 100
Observed/STA Within Each TA-AN
SW
20-38 Same Sequence as Above but Data
for Clear Skies Only
39 Solar Insolation ZIN -D 10
40 AN% Obs. Clear Sky TA & ZNBN - D, 100
TA-M
41 AN % Obs. Partly Cloudy TA & ZNBN - D, 100
TA -M
42 AN % Obs. Mostly Cloudy TA & ZNBN - D, 100
TA-M
43 AN % Obs. Overcast TA & ZNBN - D, 100
TA-M
44 DN% Obs. Clear Sky TA & ZNBN - D, 100
TA-M
45 DN % Obs. Partly Cloudy TA & ZNBN - D, 100
TA-M
46 DN % Obs. Mostly Cloudy TA & ZNBN - D, 100
TA-M
47 DN % Obs. Overcast TA & ZNBN - D, 100
TA-M
48 AN Ersatz Clear Sky Longwave TA-D 10
Flux
49 DN Ersatz Clear Sky Longwave TA-D 10
Flux
50 AN Ersatz Clear Sky Obs. Albedo TA-D 100

STA = Subtarget Area Average

TA = Target Area Average

ZN = Zonal Average

ZNBN = Zonal and Angular-Bin Average

D = Daily Average

M = Monthly Average

AN = Ascending Node

DN = Descending Node
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9.3.2.1 STA Daily Average Data

The following is a list of parameters which are available on a daily STA basis. Along with a
description of each quantity is the coded parameter number, given separately for clear and all-sky
cloud conditions, found in Word 3 of each LR. The units of flux are (W/m?), the albedo is in
percent.

Coded Parameter No.

All Clear Description
Sky Sky
1 20 AN longwave flux
21 DN longwave flux
3 22 Average longwave flux (computed from parameters 1 and 2 or 20
and 21 is available; otherwise, fill value)
4 23 AN shortwave flux
5 24 Net radiation (computed from parameters 3 and 7 or 22 and 26,

along with the daily average solar insolation if available; otherwise,
fill value). If parameter 7, 26, or the daily average solar insolation
is unavailable for subtargets in or near the polar night, then the net
radiation becomes the negative of parameter 3 or 22.

6 25 AN observed albedo

7 26 AN diurnally corrected albedo

8 27 Standard deviation of AN longwave fluxes

9 28 Standard deviation of DN longwave fluxes

10 29 Standard deviation of AN shortwave fluxes

11 30 AN longwave flux population (number of views per day)
12 31 DN longwave flux population (number of views per day)
13 32 AN shortwave flux population (number of views per day)

9.3.2.2 TA Daily Average Data

The following is a list of parameters which are available on a daily TA basis. Along with a
description of each quantity is the parameter number, given separately for clear and all-sky
conditions, found in Word 3 of each LR. Unless otherwise indicated, TA averages are computed
from daily STA averages. The units of flux are (W/m?), the albedo is in percent.

Coded Parameter No.

All Clear Description
Sky Sky
1 20 AN longwave flux
21 DN longwave flux
3 22 Average longwave flux (computed from parameters 1 and 2 or 20 and
21 if available; otherwise, fill value)
4 23 AN shortwave flux
5 24 Net radiation (computed from parameters 3 and 7 or 22 and 26, along

with the daily average solar insolation if all are available; otherwise,
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fill value). If the daily average solar insolation is zero, or very small
and parameters 7 or 26 are unavailable, for TA in or near the polar
night, then the net radiation becomes the negative of parameter 3 or

22,
6 25 AN observed albedo
7 26 AN diurnally corrected albedo

Cloud Data
(Cloud category data are collected over entire TA)

40 AN % observations clear

41 AN % observations partly cloudy
42 AN % observations mostly cloudy
43 AN % observations overcast

44 DN % observations clear

45 DN % observations partly cloudy
46 DN % observations mostly cloudy
47 DN % observations overcast

Ersatz Clear-Sky Parameters

A secondary method of obtaining daily average TA clear-sky estimates of ascending- and
descending-node longwave fluxes and ascending-node observed albedos is utilized. An average
of the first five observations within a TA (regardless of sky condition) is obtained. The next
observation is compared to this average. If it is larger (in the case of fluxes) or smaller (in the
case of albedo), then a new average is formed in the following way:

(4x01dAvqg) + LastObs
5

NewAvg=

The new average is calculated each time an observation is larger (smaller) than the current
average. The units of flux are W/m?; the albedo is in percent.

Parameter No.

All Clear Description

Sky Sky

48 AN ersatz clear-sky longwave flux
49 DN ersatz clear-sky longwave flux
50 AN ersatz clear-sky albedo

9.3.2.3 Zonal Daily Average Data

The following is a list of parameters that are available on a daily zonal-band basis. Along with
a description of each quantity is the parameter number, given separately for clear- and all-sky
cloud conditions, found in Word 3 of each LR. Unless otherwise indicated, zonal averages are
computed from daily STA averages. The units of flux are W/m’; the albedo is in percent.
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Parameter No.

All Clear Description

Sky Sky

1 20 AN longwave flux

2 21 DN longwave flux

3 22 Average longwave flux (computed from parameters 1 and 2 or 20 and
21 if both of a pair are available; otherwise, fill value)

4 23 AN shortwave flux

5 24 Net radiation (computed from parameters 3 and 7 or 22 and 26 along

with the daily average solar insolation if available; otherwise, fill
value). If latitude zones in or near the polar night, then the net
radiation becomes the negative of parameter 3 or 22.

6 25 AN observed albedo
7 26 AN diumnally corrected albedo
39 Solar insolation

Cloud Data

(Zonal Cloud Category Frequencies are computed from TA cloud category frequencies)

40 AN % observations clear
41 AN % observations partly cloudy
42 AN % observations mostly cloudy
43 AN % observations overcast
44 DN % observations clear
45 DN % observations partly cloudy
46 DN % observations mostly cloudy
47 DN % observations overcast

9.3.2.4 Zonal Angular Bin Daily Average Data

The following is a list of parameters which have been grouped or averaged by latitude zones and
by satellite-viewing angle bins. Along with a description of each quantity is the parameter
number, given separately for clear- and all-sky cloud conditions, found in Word 3 of each LR.
The units of flux are W/m?; the albedo is in percent.

Parameter No.

All Clear Description

Sky Sky

1 20 AN longwave flux

2 21 DN longwave flux

3 22 Average longwave flux (computed from parameters 1 and 2 or 20 and
21 if both of a pair are available; otherwise, fill value)

4 23 AN shortwave flux

5 24 Net radiation (computed from parameters 3 and 7 or 22 and 26, along

with the daily average solar insolation if available; otherwise, fill
value). If the daily average insolation is zero, or very small and
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9.3.2.5

parameters 7 and 26 are unavailable, then the net radiation becomes
the negative of parameter 3 or 22 for latitude zones in or near the

polar night.
25 AN observed albedo
26 AN diurnally corrected albedo
27 Standard deviation of AN longwave fluxes
28 Standard deviation of DN longwave fluxes
29 Standard deviation of AN shortwave fluxes
30 AN longwave flux population
31 DN longwave flux population
32 AN shortwave flux population

Cloud Data

AN % observations clear

AN % observations partly cloudy
AN % observations mostly cloudy
AN % observations overcast

DN % observations clear

DN % observations partly cloudy
DN % observations mostly cloudy
DN % observations overcast

STA Monthly Average Data

The following is a list of parameters that are available on a monthly STA basis. Along with a
description of each quantity is the parameter number, given separately for clear- and all-sky
cloud conditions, found in Word 3 of each LR. Unless otherwise indicated, monthly averages
have been calculated from daily averages. The units of flux are W/m?; the albedo is in percent.

Parameter No.

All
Sky

1

(S 3 8

Clear Description
Sky
20 AN longwave flux
21 DN longwave flux
22 Average longwave flux (computed from parameters 1 and 2 or 20 and
21 if available; otherwise, fill value)
23 AN shortwave flux
24 Net radiation
25 AN observed albedo
26 AN diurnally corrected albedo
27 Standard deviation of daily average AN longwave fluxes
28 Standard deviation of daily average DN longwave fluxes
29 Standard deviation of daily average AN shortwave fluxes
33 Number of days with AN longwave flux data
34 Number of days with DN longwave flux data
35 Number of days with AN shortwave flux data
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9.3.2.6 TA Monthly Average Data

The following is a list of parameters that are available on a monthly TA basis. Along with a
description of each quantity is the parameter number, given separately for clear- and all-sky
cloud conditions, found in Word 3 of each LR. Unless otherwise indicated, monthly averages
are calculated from monthly STA averages. The units of flux are W/m?; the albedo is in
percent.

Parameter No.

All Clear Description

Sky Sky

1 20 AN longwave flux

2 21 DN longwave flux

3 22 Average longwave flux (computed from parameters 1 and 2 or 20 and
21 if available; otherwise, fill value)

4 23 AN shortwave flux

5 24 Net radiation

6 25 AN observed albedo

7 26 AN diurnally corrected albedo

14 33 Number of days with AN longwave flux data

15 34 Number of days with DN longwave flux data

16 35 Number of days with AN shortwave flux data

17 36 Average number of days with AN longwave flux data per STA (within
each TA)

18 37 Average number of days with DN longwave flux data per STA (within
each TA)

19 38 Average number of days with AN shortwave flux data per STA (within
each TA)

Cloud Data
(Monthly cloud category frequencies are computed from daily cloud category frequencies)

40 AN % observations clear

41 AN % observations partly cloudy

42 AN % observations mostly cloudy

43 AN % observations overcast

44 DN % observations clear

45 DN % observations partly cloudy

46 DN % observations mostly cloudy

47 DN % observations overcast

9.3.3 Units and Fill Values

All values of longwave and shortwave flux, net radiation, standard deviation, and solar insolation
have units of watts per square meter (W/m?). All values of albedo, diurnally corrected albedo,
and cloud category frequency are expressed in percent (%).
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Fill values denoting missing or unavailable data are set to -10,000 for all parameters. If, for
example, a particular TA was not viewed during any orbit of a particular day, then all fluxes,
standard deviations, populations, cloud category frequencies, etc., would have a value of -
10,000. If this TA was viewed under overcast sky conditions only, however, then only clear-sky
parameters would have fill values. Note that for this second condition, the percent overcast
category would be 100, while the percent partly cloudy, mostly cloudy, and clear categories
would be 0 and not -10,000. Shortwave fluxes, solar insolation, and albedos beyond the
terminator region also have values of -10,000.
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ACRONYMS, ABBREVIATIONS, AND SYMBOLS

ADM angle dependent model

AN ascending node

C centigrade

CAT Calibration Adjustment Table
deg degree

DM directional model

DN descending node

ERB Earth Radiation Budget

ERBE Earth Radiation Budget Experiment
km kilometer

LIMS Limb Infrared Monitor of the Stratosphere

LR logical record

Lw longwave

m meter

MAT Master Archive Tape

MLCE Maximum Likelihood Cloud Estimation

MLE Maximum Likelihood Estimation

N north

NASA National Aeronautics and Space Administration
NFOV Narrow-Field-of-View

NSSDC  National Space Science Data Center

NwW northwest

75



OLR

PR

SAB

SE

SR

SRT

STA

SwW

TA

TOA

WFOV

Outgoing Longwave Radiation
physical record

south

Sorting into Angular Bins
southeast

steradian

Scene Radiance Tape
Sub-Target Area
shortwave

target area

top of the atmosphere
watts

Wide-Field-of-View
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